Activation of plasma membrane H(+)-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures.

نویسندگان

  • C A Viegas
  • P B Sebastião
  • A G Nunes
  • I Sá-Correia
چکیده

During exponential growth at temperatures of 30 to 39 degrees C, the specific activity of H(+)-ATPase in the plasma membrane of Saccharomyces cerevisiae (assayed at the standard temperature 30 degrees C) increased with increases in growth temperature. In addition, the optimal temperature for in vitro activity of this ATPase was 42 degrees C. Therefore, the maximum values of ATPase activity were expected to occur in cells that grew within the supraoptimal range of temperatures. Activation induced by supraoptimal temperatures was not the result of increased synthesis of this membrane enzyme. When the growth temperature increased from 30 to 40 degrees C, expression of the essential PMA1 gene, monitored either by the level of PMA1 mRNA or the beta-galactosidase activity of the lacZ-PMA1 fusion, was reduced. Consistently, quantitative immunoassays showed that the ATPase content in the plasma membrane decreased. Like ATPase activity, the efficiency of the PMA2 promoter increased with increases in growth temperature in cells that had been grown at 30 to 39 degrees C, but its level of expression was several hundred-fold lower than that of PMA1. These results suggest that the major PMA1 ATPase is activated at supraoptimal temperatures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene conversions and crossing over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae.

The pma1-105 mutation reduces the activity of the yeast plasma membrane H(+)-ATPase and causes cells to be both low pH and ammonium ion sensitive and resistant to the antibiotic hygromycin B. Revertants that can grow at pH 3.0 and on ammonium-containing plates frequently arise by ectopic recombination between pma1-105 and PMA2, a diverged gene that shares 85% DNA sequence identity with PMA1. Th...

متن کامل

Heavy metal regulation of plasma membrane H+-ATPase gene expression in halophyte Aeluropus littoralis

The present study was conducted to find the effect of three heavy metals, Ag, Hg and Pb on the expression level of a gene encoding plasma membrane H+-ATPase in Aeluropus littoralis. The experiment was laid out in a completely random design with three replications. The expression of the main gene was normalized to the expression of the housekeeping gene actin. Two 259 and 187 bp fragments were a...

متن کامل

A phosphorylation in the c-terminal auto-inhibitory domain of the plant plasma membrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins.

The plant plasma membrane H(+)-ATPase is regulated by an auto-inhibitory C-terminal domain that can be displaced by phosphorylation of the penultimate residue, a Thr, and the subsequent binding of 14-3-3 proteins. By mass spectrometric analysis of plasma membrane H(+)-ATPase isoform 2 (PMA2) isolated from Nicotiana tabacum plants and suspension cells, we identified a new phosphorylation site, T...

متن کامل

Up-regulation of plasma membrane H+-ATPase under salt stress may enable Aeluropus littoralis to cope with stress

Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence o...

متن کامل

The two major types of plant plasma membrane H+-ATPases show different enzymatic properties and confer differential pH sensitivity of yeast growth.

The proton-pumping ATPase (H+-ATPase) of the plant plasma membrane is encoded by two major gene subfamilies. To characterize individual H+-ATPases, PMA2, an H+-ATPase isoform of tobacco (Nicotiana plumbaginifolia), was expressed in Saccharomyces cerevisiae and found to functionally replace the yeast H+-ATPase if the external pH was kept above 5.0 (A. de Kerchove d'Exaerde, P. Supply, J.P. Dufou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 61 5  شماره 

صفحات  -

تاریخ انتشار 1995